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Abstract. We have studied the static structure and some themdynamic properties of liquid 
lithium by using the variational modified hypernetted chain (VMHNC) approximation as the 
liquid state theory and several effective intera(omic pair potentials, derived from different 
pseudopotentials already proposed in the literature. We also propose a new intmkomic pair 
potential derived from the neubal pseudoatom method (NPA). 

1. Introduction 

The present paper is devoted to the theoretical study of some structural and thermodynamic 
properties of liquid lithium. This atom has two s core electrons and one valence electron so, 
for normal pressures, it represents the simplest metal in nature. However, comprehension 
of its properties from a fundamental level is still seriously lacking. In many aspects, lithium 
is a special case among the alkali metals. For instance, it is practically immiscible with all 
the other alkalis, which are all miscible among themselves 111. 

Concerning the experimental determination of its static shucture factor, special problems 
also appear, specifically in normalizing and correcting the raw intensity obtained in a 
diffraction experiment. It must be noted that in an x-ray scattering experiment the x-rays 
are.diffracted by both core and conduction electrons. In the case of lithium, the conduction 
electrons amount to 33% of the total number of electrons, compared with 9% in Na, or 
1.8% in Cs. This implies that the delocalization effects in the form factor must be very 
important for lithium [Z]. Moreover, the inelastic (Compton) scattering is rather substantial 
for lithium (as compared with the other alkali metals) and the theoretical calculations of 
the Compton scattering also suffer from an inadequate knowledge of the impIications of 
the delocalization effects 131. In neutron diffraction experiments, the Placzek correction is 
larger than usual because of the small atomic mass of the lithium nucleus, and it is not yet 
clear whether the usual corrections are adequate [3-51. In fact, different treatments of these 
corrections can lead to very different static structure. factors [3,6]. 

From a theoretical point of view, the study of simple metals is closely related to 
pseudopotentials. The lack of p core electrons in lithium represents a hindrance (rather 
than a simplification) when one tries to design a reasonable pseudopotential for this system. 
In principle the pseudopotential can be of local or non-local character. Intuition says that a 
non-local pseudopotential should be better suited for lithium than a local one. This is easily 
understood if one considers that the absence of p core electrons implies that nopseudization 
is needed for p valence electrons, while s valence electrons do have to be pseudized. This 
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would imply not only a strong non-locality, but also a strong p pseudopotential, since it 
would be the whole ionic potential. 

Notwithstanding the preceeding remarks, pseudopotential theory has been used to 
study both liquid and solid lithium. In fact. local 17-10] as well as non-local [ll-151 
pseudopotentials have been proposed for lithium. Most of them have been tested only 
with very approximate liquid state theories, while others have been applied together with 
computer simulations to obtain the structure but not the thermodynamic properties of the 
system. 

In this paper we calculate both the static structure and some thermodynamic properties of 
liquid lithium as predicted by some of those pseudopotentials. Moreover, we also propose 
a new effective interionic potential computed from first principles by using the neutral 
pseudoatom (NPA) method [16-18]. The NPA is concerned with the way the 'atom'-which 
in this context involves the ion and electron polarization cloud-is modified by the uniform 
jellium in which it is embedded, rather than by another ion as in pseudopotential theory. We 
also show that, at the level of a local description, the NPA yields an interionic pair potential 
that is free of adjustable parameters, with the atomic number as the only input data. 

These potentials are used in conjunction with a recently proposed liquid state theory, 
the variational modified hypernetted chain (VMHNC) approximation [19]. We have recently 
reformulated this theory for pure systems and extended it to the case of mixtures [ZO]. We 
have also proved its reliability by comparing its predictions with the results of computer 
simulations both for pure [21] and multicomponent systems [ZO]. 

The paper is organized as follows. In section 2 we summarize the main features of 
the liquid state theory used. In section 3 we briefly describe the NPA method to obtain the 
displaced valence electronic density, which is the basis of our new local pseudopotential. 
In section 4 we list the pseudopotentials studied in this work and the results are presented 
in section 5. Finally, we sum up and discuss OUT results. 
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2. Liquid state theory: the VMIINC 

In this section we briefly review the main features of the VMHNC. For additional details see 
[19,20,221. 

The starting point of almost all integral equation theories of liquids is the Omstein- 
Zernike equation which for an isotropic, homogeneous system can be written as 

which defines the direct correlation function (DCF) c(r), in terms of the total correlation 
function h(r) = g ( r )  - I ,  where g ( r )  is the pair distribution function (PDF) and p is the 
number density. This relation is supplemented with the exact closure relation [23] 

where $(r) is the interatomic pair potential, B = (U)-' is the inverse of the temperature 
times the Boltzmann constant and B(r)  denotes the bridge function. for which some 
approximation must be made. The usual approach for choosing the bridge function is 
based on the 'universality' hypothesis of the bridge functions [23]. This means that, except 
for small differences of detail, the bridge functions are the same for all the systems, the 
only difference being a relabelling of the parameters defining them. 
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Within this idea of universality, the actual choice of the bridge functions is somewhat 
arbitrary, manly dictated by the availability of simple expressions for them, either analytic 
or derived from computer simulation. These functions are usually given in terms of one or 
more parameters, so a criterion is needed in order to determine these parameters as functions 
of the thermodynamic state. Different choices of the bridge functions, and different criteria 
to determine the parameters defining them, give rise to different versions of the MHNC. 

In the context of the VMHNC, the bridge functions to be used are those obtained 
within the Percus-Yevick (PY) approximation for the hard sphere system [24], B p y ( x .  q) ,  
where x = rp ’ /3  and 7 is the packing fraction of the spheres. These bridge functions 
have very suitable expressions because they are given almost in closed form and, most 
important, behave well as functions of x ,  namely they are continuous and differentiable 
everywhere. Note that these functions only depend on one parameter, the packing fraction 
q of the spheres. The VMHNC criterion to determine this parameter as a function of the 
thermodynamic state is to minimize a free energy functional fVMHNC(@, p ,  q )  with respect 
to variations in q .  The form of this functional is the following [19,20,22] 

(3) MHNC f VMHNC (A  P 3  17) = f (A  P. V )  - A‘”(v) 

where f MHNC is the configuratlonal part of the MHNC free energy functional 

fMHNC = 4 g ( x ) I B w p ’ ~ ’ )  + B(x)l- 6: [;h*(x) + h ( x )  - g(x) logg(x)l s 
with L(k) being the Fourier transform (m) of h ( r ) ,  and for reasons dkcussed elsewhere 
[20. 221 we take A(O)(q) as 

(5) MHNC A(’)(d = fpy (7) - f p y v ( 7 )  - &h). 

Here f$HNc(q) is the MHNC free energy functional (equation 4) when PY hard sphere 
distribution functions with packing fraction q are used, together with PY hard sphere bridge 
functions with the same q. The term &(q) is a fitting function, given by 

6&7) = fcs(7) - f P Y m  (6) 

where f p y v  and fcs denote the PY virial and the Carnahan-Starling [25] free energies for 
hard spheres. 

This completes the specification of the VMHNC. Let us only point out the main features 
that place this theory among the most suitable ones to apply to liquid metals. 

First, it is an integral equation theory of liquids. This fact avoids the need of artificially 
splitting the potential into a ‘reference’ part and a ‘tail’, as is compulsory, for instance, in 
the case of perturbation theories of liquids. Furthermore, its application is much simpler 
than in the case of perturbatiomtheories of admitted similar accuracy (e.g. the WCA + ORPA 
procedure [26]). Second, the minimization of the free energy is performed in a specific 
thermodynamic state, i.e. the VMHNC is a ‘local’. theory. Other versions of the MHNC 
[23], and also some other integral equation theories of liquids [27], are ‘global’, which 
means that an integration along a thermodynamic path is needed in order to determine 
the properties of a single state. The locality of  the theory is very important when it 
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applies to liquid metals because the effective pair potentials depend on the thermodynamic 
state 1281, and therefore care must be taken when different states are involved in the 
calculation. When using a local theory there is no concern about this problem, since 
only one state is involved. Third, the VMHNC incorporates the consistency between two 
of the thermodynamic routes, namely the energy and the virial routes. And last, but not 
least, the thermodynamic inconsistency between these two routes and the compressibility 
route is diminished, although not eliminated. This is a very attractive feature of the VMHNC 
because the effective interatomic pair potentials obtained from pseudopotential theory lead 
to an intrinsic inconsistency, the so-called electronic or Brovman inconsistency [29] which 
prevents the virial and compressibility routes from being consistent, even in an exact theory 
of liquids. 

L E Gonzdlez et ai 

3. Displaced valence electronic density: the NPA 

The first step in the calculation of the effective interatomic pair potentials proposed in this 
work is the computation of the valence electronic density displaced by an ion embedded 
in a homogeneous electron gas. This computation is made within the NPA model, which is 
briefly described below. 

In a zeroth-order approximation, a metal can be described as a homogeneous electron 
g;ts of mean density no neutralized by a uniform positive background (the jellium model). 
However this model is exceedingly simple to describe the electronic structure of any real 
metal because in this case the positive charge is not uniformly distributed (it is concentrated 
at the ions, instead) and, furthermore, the ions attract the valence electrons which pile 
up around them, thus screening the ionic potential. A pseudoatom is now formed by the 
nucleus, the core electrons and the screening cloud. With these considerations in mind we 
can decompose the total electron density, p&), as a sum of localized densities that follow 
the ions in their movement: 

where Ri denote the ionic positions, n,(r) is the core electronic density and n,(r )  the valence 
electronic density (the screening cloud). The main aim of the NPA is the computation of 
nv(r ) ;  it proceeds as follows [17,18,22,30]. 

The valence electronic density nv(r)  is itself decomposed into two contributions, n:(r) 
and n t ( r ) ,  that is, n&) = nL(r) + nC(r). The first contribution arises when an ion is 
introduced into a jellium in which a cavity has been made. That is, n;(r )  is the valence 
electronic density displaced by a total external potential 

vib.(r) = k d r )  + [(1/r) * v(r ) l  (8) 

where * denotes the convolution operation, Vio&) stands for the bare ionic potential and 
U@) specifies the shape of the cavity. This cavity is included in order to make Vin@) as 
weak as possible, and this can be achieved by imposing that the total charge of the cavity 
be equal to 2,. the valence of the ions. This will compensate the behaviour of !&(r) 
for distances larger than the ionic size, resulting in a weak y&(r) for large r.  However, 
for small distances Vion(r) diverges as -Zat/r, where Z& is the atomic number of the 
ions, and therefore, V:,.(r) will not be weak for small r .  Moreover, the contribution of 
the core electrons to V,&(r) is influenced by the presence of the valence electrons. This 
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means that V&(r) and nk(r) must be evaluated self-consistently, and within a theory able 
to cope with strong potentials. This theory is the density functional theory (DFT) [31]. 
Specifically, we use the Kohn-Sham formalism [32] and the local density approximation 
(LDA) 1331 for electronic exchange and correlation effects, which are introduced through the 
parametrization given by Vosko et al [34] to the exchange and correlation energy density. 

The second contribution to the valence electronic density, namely n t ( r ) ,  corresponds 
to the electron density that screens, in linear response theory (LRT), the charge distribution 
given by the cavity u(r)  

r i"dq) = - ( 4 x / q * ) x ( q ) w  (9) 

where the tilde denotes FT, and x ( q )  is the density response function. To be consistent with 
the assumptions made in the calculation of n:(r),  the exchange and correlation effects are 
included in x(q) through the LDA local field. 

Details on why linear response is to be used at this stage, as well as criteria to determine 
which is the optimum shape of the cavity, u(r ) ,  are discussed elsewhere 122,301. Suffice to 
say that in these calculations we use a spherical cavity of size given by the WignerSeitz 
radius Rws. 

r (0.4 

Figure 1. Displaced valence electronic density for lithium at the triple point. The full cure  
shows the total electronic density. r2n,(r) .  whereas the other curves show its two components 
r2n:(r)  (dotted curve) and r2n,"(r) (broken curve). 

Figure 1 shows the computed valence electronic density nv(r) displaced by an lithium 
ion embedded in an electron gas of mean density no corresponding to liquid lithium at 
the triple point. In this figure, we have also included the two contributions to nv(r),  that 
is, n:(r) and nC(r). Note that n:(r) screens a total zero charge whereas n:(r) screens a 
total 2, charge; this explains the strong difference between them, mainly around the core 
region. Two aspects of this figure also deserve some comment; first, the natural appearance 
of the Friedel oscillations for large r ,  which signal the metallic character of the system, 
and second, the oscillations for small r ,  which are due to the orthogonality of the valence 
electronic wave functions to the core 1s states. 

The final goal of these calculations is the construction of a local pseudopotential that, 
in linear response, reproduces the NPA displaced valence electronic density. However, 
the very definition of pseudopotential makes impossible the appearance of orthogonality 
oscillations in the valence electronic density, since no bound states can exist. Therefore, 
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Figure 2. Effective interionic pair potentials obtained for lithium at T = 470 K: full curve, NPA 
t local, broken =UN% w, chain curve, DI; dotted C U N ~ ,  Ashcroft. 

before constructing the local pseudopotential, the NPA valence electronic density has to be 
pseudized. This is achieved by introducing a pseudized valence electronic density, n&), 
defined as 

where A,  B and RM are chosen [35] so that npr is everywhere continuous and differentiable, 
and that it integrates to the same charge as n,(r )  (global norm conservation). 

Now, from npS(r), application of LRT leads to an effective local pseudopotential. Vps(9). 
given by 

&(9) = x(9)6ps(9) (11) 

and application of standard second-order pseudopotential perturbation theory leads to an 
effective interatomic pair potential, # ( r ) ,  obtained by 

@ ( r )  = z : / r  + @i&) 

Jind(9)  = ~(q)[cp(q)~' .  (13) 

(12) 

where the FT of the indirect part is given by 

We finish here this brief description of the NPA method and for further details, we refer 
the reader to [17,18,22,30]. We only point out that the choice of a local pseudopotential, 
as given by equation ( l l ) ,  is an m a t z  made so as to avoid the introduction of any 
adjustable parameters and, at the same time, to preserve the full information contained 
in the computed NPA displaced valence electronic density nv(r) .  With this procedure, we 
obtain a local pseudopotential which in LRT gives the non-linear displaced valence electronic 
density calculated by the NPA method. 

4. Effective interionic pair potentials for lithium 

In this section we describe the other pseudopotentials considered in this work. The first 
one to be considered is Ashcroft's empty core pseudopotential [7]. This is undoubtedly the 
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most popular local pseudopotential and we shall only mention that it contains one adjustable 
parameter, the core radius r,. 

Consider the behaviour of the ionic potential in lithium (KO&) + -3 / r  for small 
r ,  KoO(r) + - l / r  for large r ) .  Ashcroft’s expression is correct outside the core, but as 
Hoshino and Young (HY) [ 8 ]  have pointed out, the use of a zero value inside for p as 
well as s electrons does not seem to be a good approximation. Instead, they proposed a 
different local pseudopotential. As mentioned above, the ionic potential has to be pseudized 
only when considering s valence electrons and this can be achieved by using the following 
pseudopotential 

where s ( r )  is the Dirac delta function, and B is an adjustable parameter. The delta term 
only scatters s valence electrons, since these are the only electrons whose wave function 
can be non-zero at the origin. The ionic potential was calculated using DFT, and then it was 
parametrized. However, this pseudopotential has some unphysical features concerning its 
FT. Note that the FT of a delta function is a constant, so when q + M, HY’s pseudopotential 
goes to a constant (,9) instead of decaying to zero as it should. 

To correct this unphysical feature, Das and Joarder (DI) [9] proposed replacing ,5 in the 
expression of the FT of HY’S pseudopotential by 

where ro dictates the decay to zero of the FT of the pseudopotential, and is another 
adjustable parameter. This procedure amounts to a broadening of the D i m  8-function, 
without introducing significant non-s scattering. 

From these pseudopotentials, application of equations (12) and (13) leads to the 
corresponding effective interatomic pair potentials for lithium. 

Up to now, all the pseudopotentials considered have been local ones although non-local 
pseudopotentials have also been proposed for lithium [ I  1-15]. We shall only consider here 
the Heine-Abarenkov-type pseudopotential of Dagens, Rasolt and Taylor (DRT) [ 1 I ]  

where A I ) ,  = A M  and Rial = 1 - 1 ;  so it has four adjustable parameters (Ao,  A I ,  RO 
and R I ) .  These were varied until the valence elechonic density displaced by v k y ( r ) ,  
within the LRT, reproduced the result of an NPA-type calculation [ I I ,  171. We can therefore 
refer to it as an NPA + non-local pseudopotential. Note that DRT’s NPA calculation differs 
from the present one in two important points. First, they did not consider the electronic 
correlation, and second, they took Vio&) from the free ion, instead of computing it self- 
consistently. With the values of the parameters thus fitted, the effective interatomic pair 
potential is constructed via LRT. For non-local pseudopotentials, however, the displaced 
valence electronic density and the indirect part of the effective interatomic pair potential are 
not computed through equations (11) and (13) respectively, but by means of a rather more 
complex formalism [36] .  The main disadvantage of non-local pseudopotentials is, within 
this context, that the effective interatomic pair potential is not uniquely determined by the 
displaced valence electronic density, i.e. different non-local pseudopotentials can give rise 
to the same displaced electronic density but to different interatomic pair potentials. 
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The present work proposes to use a local pseudopotential that, within the LRT, reproduces 
the NPA electronic pseudodensity, i.e. an NPA t local pseudopotential. Note that by means 
of equations (1 1) and (13), the effective interatomic pair potential is uniquely derived from 
the displaced valence electronic density. Moreover, the pseudopotential thus constructed 
has no adjustable parameters, 

Finally, to complete the specification of the interatomic pair potentials we note that, 
within the LRT. the electronic exchange and correlation effects are introduced through a local 
field correction in the response function ,y(q). A wide variety of expressions are available 
for the local field term, although for the NPA t local and NPA t non-local approaches, the 
proper choice is the LDA local field term, so as to be consistent with the approximations 
made in the computation of the displaced electronic density. For the other pseudopotentials, 
the Ichiman-Utsumi (IU) local field term [37] represents the best available expression since 
it satisfies all the self-consistency requirements. 

Recently, Walker and Taylor (WT) [E] have adjusted the indirect part of the DRT 
potential by using Pad6 approximants, which yield analytic expressions for the interatomic 
pair potential in terms of the coefficients and the poles of the approximants. These were 
computed for 19 different densities and adjusted to a quadratic form in the density. A 
similar adjustment was also performed for the volume term of the total internal energy. In 
our study we have used these WT parametrized expressions. 

Summing up, the different pseudopotentials studied in this work are the following: 
Ashcroft’s pseudopotential, with one adjustable parameter (re); HY, with one adjustable 
parameter (0); DJ, with two parameters @, ro); WT (DRT), with four parameters fitted to an 
NPA-type calculation; and NPA t local pseudopotential, which is free of parameters. 

In the case of pseudopotentials with one parameter, we have fitted it by adjusting the 
height of the first peak of the static structure factor S(q)  whereas when two parameters 
are available, we have imposed the additional condition that S(0) is also reproduced. The 
results of the fitting are shown in table 1. In the case of HY’s pseudopotential, no value 
of the parameter could be found so as to obtain an overall agreement with experiment, 
probably due to the unphysical behaviour of the pseudopotential, and also because of the 
large depth shown by the first minimum of the corresponding interatomic pair potential. 

Table 1. Fitted values in atomic units of the panmeters for the different pseudopotentials 
considered in this work. 

Pseudopot. Ashcroft nY DI 

panmeters le = 1.44 - 8 = 19.0, ro = 0.3 

5. Results 

5. I. Structure 

The present study has been carried out for liquid lithium at three different thermodynamic 
states specified by the temperatures and number densities given in table 2. 

In figure 2 we show, for lithium at T = 470 K, the corresponding interatomic pair 
potentials obtained fiom these pseudopotentials. It is observed that DJ, WT and the present 
NPA + local pseudopotentials are rather similar, particularly for the depth and position of 
the first minimum. In fact, this resemblance is also shared with the recent pair potentials 
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proposed for lithium by Jank and Hafner [I41 and by Chihara [IO]. Jank and Hafner 
use a non-local pseudopotential based on an orthogonalized plane wave expansion of 
the conduction band states whereas Chihara starts from an effective local pseudopotential 
obtained using the DFT in the quantal hypemetted chain approximation. In comparison, the 
simple Ashcroft's pseudopotential leads to a much shallower pair potential. 

Table 2. Thermodynamic states studied in this work 

TUC) 410 595 12.5 

D 0.044512 0.043 0.042 

Now, from those interatomic pair potentials, application of the VMHNC approximation 
allows one to obtain the corresponding liquid correlation functions. We consider here the 
static structure factor S(q)  of liquid lithium at the above-mentioned thermodynamic states 
and figures 3-5 show the calculated S ( q )  corresponding to the different pseudopotentials 
considered. For T = 595 and 725 K, only the results of the Ashcroft and the NPA + local 
pseudopotentials are shown, because the WT results are practically indistinguishable from 
the NPA + local ones and the same happens concerning the DI and Ashcroft pseudopotentials. 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

.. 
I 

v) 

I 6 
(A-') 

Figure 3. Static stmcture factor for liquid lithium at T = 410 K. (a) shows the results from 
the NPA t local (full curve) and Ashcmfl (dotted curve) potentials whereas (b)  shows the results 
hom the WT (broken C U N ~ )  and DI (chain curve) potentials. The open circles are the neumn 
diffraction data of Olbrich c r d  131. 
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Flgum 4. Static structure factor for lithium ;tt T = 595 K. as obtained from the NQA t lo& 
(full curve) and Ashcrofl (dolted curve) potentials. WT resulfs are indistinguishable from the NPA 
t local ones and the same happens with the DI results mmpared with Ashcrofi ones (see text). 

Figure 5. Same as figure 4, but for T = 725 K. 

It has already been emphasized that the experimental determination of the static shucture 
factor of liquid lithium poses some specific problems. In x-ray diffraction experiments, 
the analysis of the data is rather problematic because the effects of delocalization of 
the conduction electrons are rather large, whereas for neutron diffraction experiments the 
Placzek correction is larger than usual and it is not yet clear whether the commonly used 
expression for this correction is adequate [38]. Keeping this in mind, we are aware of 
three different sets of experimental values for the static structure factor of liquid lithium: 
the neutron measurements of Ruppersberg and coworkers [4], the x-ray results of Waseda 
[6] and the more recent neutron and x-ray results of Olbrich et a1 [3]. Some important 
discrepancies can be observed among them: for example, comparison between the neutron 
results of Olbrich et a1 and the x-ray results of Waseda shows that the main peak in the 
neutron S(q) is higher by about 10% and at higher values of q a systematic shift in the 
oscillations appears, with appreciable differences in the range 1.25 A-' c q < 2 A-' [38]. 

In figures 3-5 we have also included, for comparison, the experimental neutron 
diffraction results of Olbrich et al. Although we have not included the other experimental 
data to avoid the figures becoming cramped, the comments below take these data into 
account. 

It is observed that~the four different pseudopotentials considered in this work lead to 
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theoretical values S(q) in rather good agreement with the experimental results. Both NPA- 
based potentials give a principal peak for S(q) which is slightly lower than that obtained 
from the neutron data by about 56, but they are somewhat higher than those obtained from 
the x-ray data. 

The largest difference between the results predicted by the different potentials appears at 
low q values. In figure 6 we show both the theoretical and experimental small q behaviour 
of S(q). The experimental value of S(0) is almost exactly reproduced by the WT and DJ 
potentials. The result for the latter is not surprising for, as stated above, this value was 
used to fit one of the DJ parameters. We also note that whereas Ashcroft's pseudopotential 
underestimates S(O), the NPA + local one overestimates it. 

Both the neutron 
diffraction data and Waseda's x-ray data 161 indicate, at low q .  a linear behaviour, whereas 
the x-ray data of Olbrich eta1 [3] point to a quadratic behaviour. The theoretical S(q) yield, 
as expected for all cases, a quadratic behaviour at low q. According to Copley and Rowe 
[39] (see also Matthai and March [40]), a linear behaviour for the experimental S(q) at low 
q would indicate a deviation from the linear behaviour of the phonon dispersion curve in 
the liquid. However recent measurements of the dynamic structure of liquid lithium [41,42] 
suggest a standard w = cq dispersion relation for small values of q .  

There seems to be a problem with the analysis of the experimental data, particularly at 
low q. which needs to be looked into. In the meantime the experimental results for S(q) at 
low q should be taken with some caution. 

5.2. Thermodynamics 

We now turn to the thermodynamic properties of liquid lithium at the thermodynamic states 
given in table 2. The calculations have been carried out for the different pseudopotentials 
considered in this work. 

Standard second-order pseudopotential perturbation theory shows [28] that the total 
energy of the metal can be written as the sum of a shucture dependent term and a volume 
term (independent of the structure). This latter term includes the the kinetic energy of the 
ions, the electron gas contribution and the self-interaction energy, that is 

There are also large differences between the experimental data. 

U = utd f ueg f Uself f (17) 

and a similar partitioning can be performed for the free energy f and the pressure 2, 
although the density dependence of the potential leads to an explicit contribution to Z, 
[43]. In the case of non-local pseudopotentials an additional term, due to non-locality, has 
to be included [15]. This term, which has been computed in this work, is shown in tables 3 
and 4 as unI or Z,,, its contribution to the internal energy and equation of state respectively. 
Moreover, its contribution to the Helmholtz free energy, say f,,!. is such that f.! = U"!. 

As the self-interaction energy does only depend on the density, then fself = u d f .  
Therefore the total entropy will be given by 

S = Sid f Seg + Sstr (18) 

Although much has been written on the calculation of ses. the conclusion seems to be [441 
that we can do rather well by taking the free electron result seg = ( m k r / h z ) ( ~ z Z , / 9 p z ) ' / 3 ,  
where m is the electron mass and h is Planck's constant. In the above relations U denotes 
the energy per particle in units of kT (LIINkT), f is the Helmholtz free energy per particle 
in units of kT (FINkT) ,  s stands for the entropy per particle in units of k ( S I N k ) ,  and Z 
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E y r e  6. Small angle behaviour of the static smcture factors for: ( a )  T = 470 K. (b) 
T = 595 K, (c )  T = 725 K. The open circles are neumn diffraction &U [31,the triangles are 
x-ray dam [3] and the crosses are x-ray data [6]. The meaning of the other curves is the Same 
as in figure 2. 

is the compressibility factor ( P l p k T ) .  In tables 3-5 we show the contributions to the total 
internal energy and pressure, as obtained from the different pseudopotentials, along with 
the experimental values [l]. 

As expected, the most important contribution to the total internal energy comes from 
the volume term. with the self-interaction term contributing about 66% of the total value, 
whereas the structural term represents less than 4%. Nevertheless, this latter term reflects 
rather well the differences among the corresponding interatomic pair potentials, for which 
the main difference is related to the depth of the first minimum. Ashcroft's pseudopotential 
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Table 3. Contributions to the intemal energy and pressure of liquid Lithium m T = 470 K, 
auarding to the different pseudopotentials discussed in this work. 

Pseudopot. Uid U q  U d f  Un1 4. U 

Ashcrofl 1.5 -63.78 -113.76 - 035 -175.69 
DI 1.5 -63.78 -129.48 - -5.57 -197.33 
w 1.5 -63.78 -128.26 9.11 -7.85 -189.27 
NPA 1.5 -63.78 -114.92 - -7.15 -184.35 

- - - -176.91 Experiment [1,471 - - 
Pseudopot. Zi Zog fdf z.1 z,, z 
Ashcroft 1.0 -7.89 -6.01 - 14.96 2.07 
DI 1.0 -7.89 -20.55 - 5.78 -21.65 
UT 1.0 -7.89 -22.34 13.73 1.78 -13.72 
NPA 1.0 -7.89 -7.02 - 16.70 2.80 - - - 0.0 Experiment [I] - - 

Table 4. Same as table 3, but for T = 595 K. 

Pseudopot. Uid U g  U I l f  Unl  UlCT U 

Ashcrofl 1.5 -50.16 -89.70 - 0.46 -137.91 
DI 1.5 -50.16 -101.73 - -4.04 -154.44 

NPA 1.5 -50.16 -90.45 - -5.48 -144.60 
Expriment [1,4n - - - - - -138.75 

WT 1.5 -50.16 -100.67 6.79 -5.80 -148.35 

Pseudopat. zid z, Z d  . 2.1 Z,W Z 

Ashcrofl 1.0 -6.36 -4.50 - 11.32 1.46 
DJ 1.0 -6.36 -15.53 - 4.36 -16.52 
WT 1.0 -6.36 -16.89 10.28 1.38 -10.59 
NPA 1.0 -6.36 -5.43 - 12.09 1.30 
E X D C ~ ~ W D ~  rii - - - - - 0.0 

Table 5. Same as table 3. but for T = 725 K. 

Pseudopat. Uid Ucg  Urclf U 4  US" U 

Ashcrotl 1.5 -41.05 -73.53 - 0.51 -112.57 
DJ 1.5 -41.05 -83.19 - -3.05 -127.29 
WT 1.5 -41.05 -82.35 5.43 -4.44 -120.91 
NPA 1.5 -41.05 -74.05 - -4.38 -117.97 
Exoerimenl 11.471 - - - - - -113.87 

Pseudopoi Zcd 2,s Zsll znl zstr 

AshcroR 1.0 -5.29 -3.58 - 9.18 1.32 
DI 1.0 -5.29 -12.40 - 3.55 -13.14 
WT 1.0 -5.29 -1354 8.23 1.25 -8.35 
NPA 1.0 -5.29 -4.23 - 6.27 -2.25 

- - 0.0 Experiment [ l ]  - - - 

leads to the shallower attractive part and then to a positive value of the structural term. On 
the other hand, WT'S potential shows the deepest first minimum and the largest (negative) 
conhibution to the structural term. For the total internal energy, it is found that Ashcroft's 
pseudopotential gives the most accurate values. The present NPA t local pseudopotential 
also leads to rather good results, the discrepancies being around 4%. 
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Finnis [45] has argued that, although the volume term is the most important one for the 
energy, its derivative with respect to density need not be so when it comes to computing the 
pressure. In fact, this is the case for the Ashcroft and NPA + local pseudopotentials, where 
the structural and volume terms are comparable but with opposite signs, leading to values 
of the compressibility factor around zero. Moreover, both contributions of the volume term 
to the compressibility factor are very similar. However, this does not hold for the DJ and 
WT pseudopotentials, for which the self-interation term is much greater (in absolute value) 
than the electron gas and structural parts, leading to rather large and negative values of 2. 

Finally, table 6 shows the theoretical values obtained for the excess entropy of liquid 
lithium at several temperatures. All the pseudopotentials considered here show a very good 
agreement with experiment, with the NPA + local pseudopotential giving the most accurate 
results. This is a very interesting feature of this pseudopotential because as already pointed 
out by some authors [le], the excess entropy is a very important magnitude for testing the 
overall quality of a given interatomic interaction. 

Table 6. Excess entropy of liquid lithium in units of Nk for the states considered in this work. 
according IO the different pieudopotentids. 

T = 470 K r = 595 K T = 72s K 
Ashcrofl -3.53 -3.01 -2.62 
DI -3.51 -291 -2.57 
wr -3.53 -3.03 -2.63 
NPA -3.37 -2.88 -2.50 
Exoerimenl 111 -3.37 -2.90 -2.52 

6. Conclusions 

We have tested, using a highly reliable liquid state theory, a set of different pseudopotentials 
for liquid lithium. From this study we have found that HY’s pseudopotential has to be 
discarded as a candidate to describe the properties of liquid lithium since it does not give 
good results even for the static structure. Its modification, proposed by DI, leads to very good 
results for the structure, but shows some problems when it comes to the thermodynamic 
properties. Ashcroft’s pseudopotential, despite having little appeal from a physical point of 
view, gives rather good results both for the static smctore and thermodynamic properties 
considered in this work. 

Concerning the NPA-derived pseudopotentials, it has been found that if the WT non-local 
pseudopotential is used, the results for the static structure are in excellent agreement with 
experiment, but problems arise when considering the pressure. On the other hand, if the 
NPA + local potential is used, rather good results are obtained both for the structure and 
thermodynamics, while resorting, moreover, to no adjustable parameters. 

We therefore conclude that the ab initio NPA + local potential proposed in this work is 
a very promising starting point for the study of liquid lithium. This conclusion is supported 
by the present theoretical results as well as by recent molecular dynamics results for some 
dynamic properties, carried out using this potential 1461. 

Nevertheless, the thermodynamic properties, and even more, the static structure are not 
too stringent a test for a given interionic pair potential. We note that whereas Ashcroft’s 
potential and the NPA + local one are very different, they yield similar results for the static 
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structure and thermodynamic properties. It is possible that these differences will show up 
in the calculations of the dynamic structure and ionic transport properties. We intend to 
carry out these calculations in the near future and shall report the results on completion. 
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